
x

Sunny Nahar

Parallelizing Seed Selection in DNA Read Mapping

Genomes are composed of base pairs:
• Adenine, Guanine, Cytosine, Thymine. 

The goal is to find the sequence of base 
pairs which compose the genome.

Why is this useful?

• Tracing evolution.
• Correlating genes with diseases.
• Forensics and identification.

ResultsWhat is DNA Sequencing?

• DNA split into small 
pieces called reads. 

• Using a reference 
genome, reads are 
mapped to potential 
locations.

• Must account for 
errors in reads: 
insertions, deletions, 
and substitutions.

How is Sequencing Done?

Generating the HashTree

Bidirectional Frequency Predictor Construction

Research Question

Description:

• Hashtable of frequency tries of the 
reference genome which stores 
seed frequencies.

• Queries are O(L) cache misses.

• Need to load from disk to construct 
and perform computation: 80GB.

Parallel Seed Selection

I would like to thank Prof. Onur Mutlu and Hongyi Xin for their help 
and advice on the project and for enabling this research.

Tool for speeding up seed selection. A data structure to estimate
frequency of seeds:

• Used to minimize reference trie queries.

• Predicts frequency given base seed, left and right extension.

• Gives O(1) cache miss complexity.

Parallelization:
• Requires single DFS traversal of HashTree.

• Threads take set of tries from the hashtable.

• Only synchronization is atomic writes.

Acknowledgements

Conclusion and Future Work

This problem is very computationally challenging:

• Billions of reads.
• Fuzzy string matching. 
• Multiple mapping locations per read.

Question: Can we exploit multi-core machines to improve speed?

• Offset high cost of computation: read mapping is slow.
• Efficiently use resources (caches, cores, etc).
• Achieve good speedup and minimize overhead of concurrency.
• Build a low complexity, cache-efficient, memory efficient system.
• DNA Infrastructure is inherently parallel.

Machine Specifications:
• 4 sockets.
• 10 cores and 256GB RAM (NUMA) per socket.
• Intel Hyperthreading.
• Total 80 logical threads, 1TB RAM.

Predictor Construction Speedup

Seed Selection:
• Given a read, output set of seeds.
• Used in next stage (edit distance filtering).
• Low frequency seeds are important.

There are multiple seed selection algorithms and heuristics:
• Mix of accesses to HashTree and predictor.
• Varying levels of complexity.

Parallelization:
• Parallelize selection over read set.
• HashTree and predictor are static: read coherence overhead.
• NUMA effects on non-local threads (up to 2x overhead of read).

Parallelization:
• Each thread reads portion of file.

• Using memory mapped IO removes copy to 
main memory (kernel page cache).

• Each trie can be independently generated. 
Construction time hides disk latencies.

• Dynamic work scheduling.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80

Threads

S
p

e
e

d
u

p

Threads
S

p
e

e
d

u
p

HashTree Construction Speedup

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Speedup of Seed Selectors

Cen Bidir Unif E Cen Bidir Unif Hobbes Bidir Hobbes Cen Bidir Hobbes E Bidir Hobbes E Cen Bidir Hobbes

We were able to efficiently parallelize various components of 
the seed selection pipeline.

• Exhibit large speedups:
• 15x for HashTree construction.
• 41x for Frequency Predictor construction.
• 60-70x for Seed Selection algorithms.

• Still room for further optimizations.
• Processor affinity.
• Masking NUMA with work distribution.

Threads

S
p

e
e

d
u

p


