Carnegie
Mellon

University

What is DNA Sequencing?

Genomes are composed of base pairs:
 Adenine, Guanine, Cytosine, Thymine.
The goal is to find the sequence of base GCTAGGA

pairs which compose the genome.
\(&

Why is this useful?

* Tracing evolution.
* Correlating genes with diseases.
* Forensics and identification.

_

ACGTCCTATGCGTATGCGTAATGCCACATATTGCTATGGTAATCGCTGCATATC

* DNA split into small genome length G ~ 10°

pieces called reads.

* Using a reference
genome, reads are
mapped to potential
locations.

read length L ~ 100

Reference Genome (~3B bases)

.~ Y
AACACACCCAAGGGGGAAACTTTGGTCCACCCAAGGGGCAAALCCAAGGGGGAAACTTTG

ACACC cee GAAACT
ACCC GGGGGAAACTTTG
AACACACCC CGGGGAZ

Deletion

 Must account for
errors in reads:
insertions, deletions,
and substitutions.

QO
o
GCA AICCCAAGGGGGAA IR
A AI2CC S

Single Nucleotide Polymorphism

This problem is very computationally challenging:

* Billions of reads.
* Fuzzy string matching.
 Multiple mapping locations per read.

_

Research Question

Question: Can we exploit multi-core machines to improve speed?

e Offset high cost of computation: read mapping is slow.

e Efficiently use resources (caches, cores, etc).

* Achieve good speedup and minimize overhead of concurrency.

* Build a low complexity, cache-efficient, memory efficient system.
* DNA Infrastructure is inherently parallel.

Machine Specifications:

* 4 sockets.

10 cores and 256GB RAM (NUMA) per socket.
* Intel Hyperthreading.

 Total 80 logical threads, 1TB RAM.

_ W

Sunny Nahar

Generating the HashTree

Description: Root

Hashtable of frequency tries of the N

reference genome which stores
seed frequencies. it

Queries are O(L) cache misses.

Need to load from disk to construct
and perform computation: 80GB.

AN 7 %

Parallelization:

Each thread reads portion of file.

Using memory mapped IO removes copy to
main memory (kernel page cache).

Each trie can be independently generated.
Construction time hides disk latencies.

Dynamic work scheduling.

HashTree Construction Speedup
16

P =m

14

Speedup

o N B OO ©®©

0 10 20 30 40 50 60 70 80
Threads

A C G T
AA AC AG CcT GA TA TC TT

N

Bidirectional Frequency Predictor Construction

Tool for speeding up seed selection. A data structure to estimate
frequency of seeds:

Used to minimize reference trie queries.
Predicts frequency given base seed, left and right extension.
Gives O(1) cache miss complexity.

Parallelization:

Requires single DFS traversal of HashTree.

* Threads take set of tries from the hashtable.

Only synchronization is atomic writes.

Predictor Construction Speedup

45
40
35
30

25

Speedup

20
15

10

0 10 20 30 40 50 60 70

Threads

80

_

Parallel Seed Selection

Seed Selection:

* Given a read, output set of seeds.

* Used in next stage (edit distance filtering).
* Low frequency seeds are important.

ATCTACGAGGCTACTAGCTAGGCATCTACTATCTACTACAGCGACGGCGG

- Rt U

439 503 492

Freq: 620
There are multiple seed selection algorithms and heuristics:
* Mix of accesses to HashTree and predictor.

* Varying levels of complexity.

Parallelization:

* Parallelize selection over read set.

 HashTree and predictor are static: read coherence overhead.

* NUMA effects on non-local threads (up to 2x overhead of read).

Speedup of Seed Selectors

70

0 10 20 30 40 50 60 70 80
Cen Bidir Unif ——E Cen Bidir Unif Hobbes —-Bidir Hobbes —e—Cen Bidir Hobbes ——E Bidir Hobbes —s—E Cen Bidir Hobbes

Threads

Conclusion and Future Work

We were able to efficiently parallelize various components of
the seed selection pipeline.

* Exhibit large speedups:
 15x for HashTree construction.
 41x for Frequency Predictor construction.
* 60-70x for Seed Selection algorithms.

e Still room for further optimizations.
* Processor affinity.
 Masking NUMA with work distribution.

W

/

Acknowledgements

\.

| would like to thank Prof. Onur Mutlu and Hongyi Xin for their help
and advice on the project and for enabling this research.

