
Parallelizing DNA Read Mapping
Sunny Nahar



What is DNA Sequencing?
Finding the base-pairs for the genome.



Why is this useful?
● Tracing evolution.

● Correlating genes 

with diseases.

● Forensics and 

identification.



Current Technology (Shotgun)
● Split DNA into small pieces (reads).



Read Mapping
● Have access to a reference genome.

● Align reads to reference.



Computationally Challenging
● Billions of reads.

● Fuzzy matching.

○ Handle insertions, deletions, mutations, errors.

● Multiple mapping locations.

● Assemble with high probability.



How do we map a read? (Seed-and-extend Method)
● Match substrings (seeds) exactly 

to the reference.

○ Possible locations.



How do we map a read? (Seed-and-extend Method)
● Use edit distance to 

determine quality.

○ Dynamic Programming 

(score based)

■ Needleman-Wunsch

■ Smith-Waterman

● Choosing less frequent 

substrings is important.



Research Project
● Improve the speed of the mapper (aligning reads).

● Develop novel algorithms and heuristics.

● Low complexity, memory efficient, cache efficient.



This Presentation
● Focuses on one part of the pipeline: Seed Selection.

○ Given set of reads, output seeds.

○ These are used to find potential mapping locations.

● Discuss parallel optimizations and improvements to runtime.



Parallelizing the Infrastructure



DNA Read Processing Pipeline
1. Generating the HashTree representation of genome.

2. Building a frequency predictor.

3. Performing seed selection.

4. Pipe results into next stage (edit distance).



Machine Specs
Test machine:

● 4 sockets.

● 10 cores and 256GB RAM (NUMA) per socket.

● 2 hardware threads per core (Intel Hyperthreading).

○ Memory latency.

● In total, 1TB RAM with 80 logical threads.



Generating the HashTree



Genome Representation
● Hashtable of Frequency Tries.

○ Each node stores a character and 

frequency.

○ Hashtable on first 10 letters.

● Bounded (length 30)

● ~80GB on disk.

● String frequency queries.

● L cache misses.



Generation in Parallel
● Reading from disk is sequential.

○ Threads take turn reading.

○ Memory mapped IO removes need for explicit copying.

○ Copied to Kernel page cache as opposed to user memory.

○ Incur TLB misses vs cache misses.

● Each trie can be independently generated.

○ Only issue is memory allocator.

○ Traditional malloc has a lock.

○ Only need alloc (not free).

○ Implement own allocator which is locality aware.

○ Was initial bottleneck. (2hrs to 10 minutes)



Generation in Parallel
● Dynamic work scheduling + greedy allocation.

○ Trie sizes are highly nonuniform.

○ Schedule largest tries first to balance workload.

■ Estimate from filesize.

● Kernel aware access policies.

○ TLB linear access.

○ File linear access.



Speedup Graph



Frequency Predictor



What is the Frequency Predictor?
● Access to HashTree is costly (L cache misses)

○ Instead, give an estimated frequency. 

● Reduces to 1 cache miss.

● Store a table: 

○ table[base][L][R] -> base (10 letters) extended to left by 

L letters, right by R letters.

● Example: AGCTGACG ATGCTAGCTA GCTCG 

○ Lookup table[ATGCTAGCTA][8][5]



Construction of Predictor
● Requires traversing through the entire HashTree.

● Updating a large table

○ Synchronization at same entries.

○ Accomplished with atomic writes.



Speedup Graph



Seed Selection



What is Seed Selection?
● Given input set of reads, output set of seeds for each read.

○ Based on input parameters.

○ GCAGTCAGTCGATCGATCGATCGTACGTACGTACAGCTAGC

TA

● Algorithms use mix of accesses to HashTree and predictor to 

determine seeds.



Parallelization
● Selection is parallelized over reads.

○ Per thread data structures, reduced at end. 

● Both the HashTree and Predictor are loaded in memory.

○ Generally sparse accesses.

○ Cache write coherence is not an issue, since only read 

access to memory.

○ Cache reads create coherence traffic (costly on socket 

architecture).



Parallelization
● Stack memory vs malloc.

● NUMA degrades performance.

○ Threads closest to HashTree, Predictor perform much 

faster.

○ Observed up to 2x overhead.



Speedup Graph



Questions


