Cooperative Localization with Symbiotic Planetary Rovers Ananya Kumar, Sunny Nahar – Advisor: Red Whittaker

Introduction

The **Moon** and **Mars** are rife with uncharted features of immense scientific value:

- Caves are prime prospects for water and life.
- **Pits** are a safe haven from radiation, meteorites, and temperature variations.

These features are **too risky** for the primary rover to explore.

Research Question

A **symbiotic multi-rover system** is a possible solution:

- Large sophisticated parent rover.
- Smaller, inexpensive, and expendable child rovers.

Issue of **Localization** for child rovers:

- Lack hardware to localize well.
- Need to accurately navigate and explore.
- Need to return to the parent to recharge battery.

This research uses cooperative localization to improve position estimates.

SOIUTION: MAXWELL

Past Research and Current Approach

Past research on cooperative localization:

- Some rovers are stationary (e.g. Leapfrogging).
- Rovers move in fixed formations.
- Landmarks are used to localize.
- Rovers are identically modeled.

Current approach:

- Motion is not constrained.
- Sensor models are based on planetary analogs.
- Parent child rover model is used.
- One rover's starting location might not be known.

tion:

Method

Step 1: Rovers move, incorrectly estimate pose.

Rover 2
Estimated Position

Rover 1
Estimated Position

Distance Measurement Rover 2
Estimated Position

Position

Step 2: Rovers measure distance to each other.

Step 3: Rovers correct pose estimate.

Grid Filter

Step 2: Distance Step 3: Filter improves pose measurement updates grid. estimate for both rovers.

- Each rover stores a **moving grid** of possible locations of its position.
- For each grid cell, the rover stores the **probability** that it is in the grid cell.
- The grid is updated when rovers move and take distance measurements.
- The **maximum likelihood** estimate is used for corrected position.

Extended Kalman Filter

State estimator combining prediction and measurement data:

Observed

Supplied by user •••

- Learns a continuous space Hidden Markov Model.
- Extended Kalman is **non-linear** version of Kalman filter.
- Optimal for Gaussian error.

Model:

- $x_k = Rover(x, y) state$
- P_k = Rover (x, y) covariance
- u_{k-1} = Rover (distance, heading)
- z_k = Rover (pairwise distance)
- w_k , v_k = Process / Measurement noise
- F = State transition
- H = Observation transition

Test Scenarios

The Extended Kalman and Grid filter were tested using simulations (300 simulations/scenario):

- Rovers take a pseudo-random path.
- Algorithms observe sensor readings with noise.
- Algorithm position estimates are compared with ground truth.

Scenarios:

- Twin rovers: Both have moderately accurate sensors.
- Parent-child rovers: Parent has accurate sensors; child is less accurate.
- Camera: One rover can also get the direction to other rover.
- Sensor error model: Gaussian or Uniform.
- **Biased sensors**: Sensors have biases.
- Standard start: Both rovers start at the origin.
- Lost child problem: Initialize with child rover position unknown and parent known.

Results

Kalman had **2.3 times lower error**, and did better than dead reckoning in 294/300 runs.

Twin rovers, 500m trek

Grid had **1.25 times lower error**, and did better than dead reckoning in 291/300 runs.

Parent-child, 100m trek with bias

Final Error (%)

| Kalman (child lost) | 5.31

Parent-child, 100m trek with camera

Grid had **4.3 times lower error**, and did better than dead reckoning in 299/300 runs.

than dead reckoning in 237/300 runs.

Method	Error (%)	2 × Standard Error
Odom (both rover positions known)	2.70	0.15
Kalman (child lost)	4.10	0.56

Parent-child, lost child, 100m trek

Kalman got **only 4.10% error** although location of child rover was initially unknown.

Kalman had 1.17 times lower error, and did better

Kalman got **only 5.31% error** although location of child rover was initially unknown.

0.69

Conclusion, Impact, and Future Work

By incorporating **pairwise distance** between rovers, our algorithms **significantly improved localization accuracy** relative to dead reckoning by the same rovers if acting alone:

- Parent child: Kalman did 2.3 times better.
- Twin rovers: Grid based method did 1.3 times better.
- Camera: Grid based method did 4.3 times better.
 Sensor bias: Kalman did 1.17 times better.
- Random reboot: Kalman had 95% accuracy.

This research shows **cooperative localization** for planetary exploration is feasible:

- Algorithms work well in a variety of situations and realistic scenarios.
- Algorithms establish a **lower bound** for what is possible.
- Large scope for potential research.

Future Work:

- Implementing our methodologies on real rovers.
- Experiment with other algorithms (unscented Kalman filter, particle filter).

Acknowledgements

We would like to thank Prof. William Red Whittaker and Curtis Boirum for their help and advice on the project, and SURG, CMU, and Boeing for enabling this research.