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Precision/Recall 

How do different levels of feature normalization affect the running time of BitShred’s 
coclustering algorithm? 

Without reducing the hash range, is there a feature normalization that approximately 
preserves BitShred’s coclustering output while being significantly faster? 

Conclusions 
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Background 

Notation 

We try to follow the notation in the BitShred paper [1] when possible. 

N = n number of malware samples (#rows in feature & fingerprint matrices) 

M number of observable features (#cols in feature matrix) 

M* number of observed features in the given data set 

m fingerprint size (#cols in fingerprint matrix) 

w sliding window size (“n” in n-gram) 

h hash function mapping from [M] to [m] 

L number of normalization levels used in our experiments 

si malware sample i 

Fi feature (row) vector of sample i (in practice this is never computed) 

fi fingerprint of sample i 

FM(k,l) fingerprint matrix with k row groups and l column groups 

k*, l* number of row and column groups when coclustering finishes 

T homogeneity threshold, measured in encoding length of submatrix 

Rationale 

A value before data reduction is set in uppercase, and its counterpart after data reduction is 
set in lowercase. Global constants and matrices are set in uppercase. All other scalar values 
are set in lowercase. Measurement outcomes are denoted in the starred notation. 
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BitShred Recap 

The key idea behind BitShred is feature hashing, which exploits the sparseness of feature 
vectors encountered in many real-world applications. To make this document more 
self-contained, let us briefly review the concepts behind BitShred. 

Features 

Given a set of malware sample { si }, BitShred starts by extracting a set of features from each 
si. This can be done by, for example, sliding a window of w (e.g., 16) bytes over the sample’s 
text section, which is where the executable code is located in a binary. Suppose the current 
content of the sliding window is x. We say that si has feature x. 

Feature Vector 

Conceptually, we imagine a sample si is represented as a feature (row) vector Fi whose length M 
is the number of observable features. In the example above, M = 2^128 since there are 128 bits 
in a sliding window of 16 bytes and there are 2^128 different 128-bit strings. A key observation 
that enables BitShred to scale in many applications is that the feature vectors encountered in 
those applications tend to be sparse, i.e., a large fraction of the entries in a feature vector are 
zero . This is because the corresponding feature space has been chosen to be so large that 1

most of the observable features are not present in the samples. One possible reason behind 
such a feature space choice would be to ensure that the features are intuitive. 

Fingerprint 

To exploit the sparseness of feature vectors, BitShred employs feature hashing, a popular data 
reduction technique from machine learning. The idea of feature hashing is as follows. Instead 
of representing a sample si as its feature vector Fi, we represent si using what we call its 
“fingerprint” fi by choosing an appropriate hash function h that maps from the feature space 
[1..M] to [1..m], where m is the size of the range of h. Once h is chosen, we produce fi by iterating 
through the features of si. Suppose a feature x is present in si. Without feature hashing, we 
would have marked the x-th bit in the hypothetical feature vector Fi; with feature hashing, we 
mark the h(x)-th bit in the fingerprint fi instead. 

Clustering 

BitShred can perform (i) clustering and (ii) coclustering using fingerprints. The goal of a 
clustering task is to identify clusters: a subset of samples that exhibit similar behavior (contains 
/ lacks) over the entire set of observable features. BitShred performs bottom-up clustering, 
a.k.a. agglomerative clustering. Initially, each sample is in its own cluster. Two clusters that 
are deemed similar will be linked together to form a bigger cluster. This linking process 
continues until only one cluster is left. The result is a dendrogram, a tree depicting the 
dependency order of cluster linkages. In this report, we do not consider clustering. 

1 This is without loss of generality since one may logically negate the meaning of each feature when there are 
more ones than zeros. 
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Coclustering 

The goal of a coclustering task is to identify coclusters: a subset of samples that exhibit similar 
behavior (contains / lacks) over a subset of observable features and vice versa. BitShred 
performs coclustering by first constructing an initial n-by-m fingerprint matrix FM(1,1) whose 
i-th row is fi. The result of coclustering is a grouping of the rows of FM(1,1) and another 
grouping of the columns of FM(1,1). Suppose there are k* row groups and l* column groups when 
the coclustering algorithm is terminated. Observe that each row of FM(1,1) will be assigned to a 
row group ranging from 1 to k* and each column a column group ranging from 1 to l*. By laying 
out the rows and columns in the order of their respective group to produce FM(k*,l*), each 
submatrix induced by a row and a column group is considered a cocluster in the output. Note 
that the exact ordering of the rows/columns within a row/column group is unimportant. 

The goal of a coclustering algorithm is to generate the row and column groups such that each 
induced submatrix is deemed homogeneous. For example, we can require that each submatrix 
be highly compressible by some coding algorithm. For this report, it would be sufficient to think 
of this as specified by a threshold T. BitShred’s algorithm explicitly maintains FM(k,l). At each 
iteration of an outer loop, it tries to improve the homogeneity by rearranging the rows (or 
columns, depending on the iteration) while keeping the column groups (resp. row groups) 
steady. Once an inner stopping criteria is met, the next iteration commences after increasing 
the number of column groups (resp. row groups). The algorithm terminates when it satisfies an 
outer stopping criteria that the homogeneity of each induced submatrix surpasses T. (We refer 
the reader to the BitShred publication [1] for more details.) 

Tradeoff Between Coclustering Quality and Speed 

When using the feature hashing technique to reduce data size, the key is to choose a right hash 
function for the task. Since high-performance and well-behaved hash functions are readily 
available (BitShred uses an algorithm known as djb2 ), our choice essentially boils down to 2

picking the range m of the hash function. As the feature vectors in our task tend to be very 
sparse in practice, m can be chosen to be much smaller than M. A reasonable first try would be 
to let m equal to a small multiple of the number of observed features M*. 

Tradeoff 

Unfortunately, there is a difficult tradeoff in picking the exact value of m due to the presence 
of hash collisions.  Ideally, we would like to pick an m that is large enough for our data set 3

such that the collision rate can be deemed to be “low enough” and then we can proceed as if 
collisions do not have any significant effect on our downstream analyses. However, larger 

2 djb2 is described in http://www.cse.yorku.ca/~oz/hash.html 
3 Another tradeoff which we do not discuss in this report is the selection of the actual feature set. Picking a 
feature set that results in features that are too generic can be detrimental to downstream analyses. As an 
extreme example, consider a sliding window of one bit: the two observable features will be present in virtually 
all samples and thus cannot be used to distinguish the samples in downstream analyses. For this this report, 
we assume that a small sliding window over assembly statements is good. This assumption will be evaluated 
in future work. 
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fingerprints are also slower to manipulate. Since coclustering is a computationally hard 
problem (certain variants are NP-hard) and thus coclustering algorithms tend to run for a long 
period of time (hours or even days are not uncommon), there is a real need to artfully balance 
between our two needs: coclustering quality and speed. 

Coping Strategies 

Over the years of this program, a number of strategies has been proposed to cope with the 
above tradeoff. For this report, we will merely list them and only discuss Feature Normalization. 
Note that some of these strategies may be combined. 

Reduce Collision 

● Perfect hashing completely eliminates collision, thus offering the best obtainable 

coclustering result. 
● Explore other hash functions. While keeping the average load (#inputs/#bins) constant, 

some hash functions may give a more even load than others when handling features 
that do occur in the real world. 

Reduce Sample (Row) Space 

● Use clustering to produce row groups, each of which is smaller than the input data set, 

then run coclustering on each row group as a data set. This may speed up the overall 
process. (Merging the individual coclustering results would be challenging, but this step 
may not be needed in real-world applications.) 

Reduce Feature (Column) Space 

● Use principal component analysis to identify and keep only highly-distinguishing features. 

● Use deterministic sampling to reduce the number of observed features. This method has 
the benefit of offering a highly-tunable degree of control on the expected amount of 
reduction; however, the selected features do not have any semantic relationship. 

● Use feature normalization to reduce the number of observed features. This report 
focuses on this strategy and we will explain its benefits below. 

Proposal: Feature Normalization 

Definition 

Feature normalization is (i) the grouping of observable features into a set of user-configurable 
equivalent classes and (ii) the replacement of each observed feature by a canonical 
representation of its class. As an illustration, suppose a feature is defined to be “two 
consecutive assembly statements from disassembly” and the particular feature under 
consideration is: 

mov edx, [esi+4*ebx] 

add edx, 42 
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One possible normalization would be to regard all immediate constants as equivalent, thus 
yielding 

mov edx, [esi+IMM*ebx] 

add edx, IMM 

This can be strengthened (increased normalization power) to regard all registers as equivalent 
as well, yielding 

mov REG, [REG+IMM*REG] 

add REG, IMM 

In this report, we consider 6 normalization levels, with the first level being no normalization. We 
describe them in Normalizations. 

Benefits of Feature Normalization 

We argue that feature normalization is a desirable method to control the amount of hash 
collision without increasing the hash range m. 

First, observe that feature normalization can only reduce the number of unique inputs to the 

hash function. This is because multiple features can be normalized into the same 
representative. Holding m constant, fewer inputs to hash means potentially fewer hash 
collisions. 

Second, and more importantly, feature normalization offers what we call “controlled 
collisions”. Observe that without feature normalization, two unrelated features can be hashed 
into the same value just by sheer chance. Feature normalization, on the other hand, 
deliberately “collides” two related features into their representative and then hashes the 
representative instead. In other words, changing the hash domain from the original feature 
space to the normalized feature space allows us to group features at the earlier normalization 
stage, thus reducing collisions at the later hashing stage. Since we get to design our 
normalization rules, we have complete control over what features get “collided” into a 
equivalence class. With our intention of designing rules that group together semantically similar 
features, we therefore argue that our controlled collisions are more desirable for downstream 
similarity analysis.  

(Although it is still possible for two representatives to collide in the hashing stage, we notice 
that we can combine feature normalization with perfect hashing, thus eliminating all collisions. 
We leave this combination for future work.) 

Proposal: Cocluster Preservation 

A key challenge in our malware coclustering research is how to automatically assess the 
quality of a coclustering result. The key word here is “automatic”: while we do occasionally 
receive feedback from analysts on whether a coclustering result is deemed “good”, such 
feedback requires manual effort and thus carries very high cost. Furthermore, such feedback is 
categorical (not numerical) in nature and is thus not suitable for evaluating the effect of 
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various data reduction strategies on coclustering quality. (On the other hand, it is easy to 
measure their effect on running time.) 

Our insight in the last quarter is that if the application of a data reduction strategy speeds up 
the cocluster computation and also does not change a coclustering result “by much” in a 
quantifiable manner, then an analyst may be quite willing to accept the strategy. Not only does 
our insight allow us to sidestep the obstacle of how to measure the quality of a coclustering 
result, it also opens the door to a new line of inquiries. 

1. Using a data reduction strategy with a reduction power that is tuned numerically, does 
increasing the power gradually give rise to coclustering results that change smoothly? 
Intuitively, for a strategy that aims to control semantic meaning reduction (such as 
feature normalization), this is a highly desirable property on both the strategy and the 
coclustering algorithm.  For the strategy, this shows that it indeed preserves semantic 4

meaning; for the algorithm, this shows that it produces semantic meaning (some form of 
information captured from the input data set). We leave this as future work. 

2. For a data reduction strategy with a reduction power that is tuned categorically, if we 
can identify a chain of settings that strictly increases data reduction (as is the case in 
feature normalization), then we can similarly check if the chain gives rise to smooth 
results. 

3. In general, given a chain of increasing data reductions, we can study its improvement on 
the running time vs. its ability to preserve a coclustering result. A big win could be have 
if the amount of data reduction that yields a significant running time improvement 
changes a coclustering result only by a small amount. If so, we may choose to accept 
this tradeoff. 
(Notice that we specifically do not aim to study its effect on coclustering quality — 
indeed, it is possible that coclustering after a data reduction gives a result that 
actually has a higher quality. Our focus is on preserving the quality that is already 
present in the output.) 

4. We can combine our data reduction with the original approach to data reduction: reduce 
the hash range m. Observe that data reduction reduces the number of inputs reaching 
the hash. If we also decrease m carefully, then we should be able to maintain (or we 
can even choose to improve) the hash collision rate.  Since decreasing m improves the 
running time, if we can show that the coclustering result is preserved after the 
combined changes, then this is a net win. We leave this as future work. 

The Feature Friendship Metric 

Having identified that our task should be comparing the change between two coclustering 
outputs instead of assessing the quality of an individual output, what remains is to identify a 

4 On the contrary, for a strategy that does not aim to offer any control on semantic meaning reduction (such as 
deterministic sampling), it is less clear whether we should expect the coclustering results to change smoothly 
as data reduction is increased. If it is indeed smooth, then we may conclude that there is still enough semantics 
left in the selected data. 
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suitable metric to measure such changes. For this purpose, we propose the following quantity 
that we call “feature friendship”, or “friendship” for short. 

Let x and y be two distinct features (columns) observed from a dataset and let x~  and y~ be 5

the representations of x and y in the coclustering output. If x~ and y~ are in the same column 
group, then we say that x and y are “friends”. Since there are M* observed features, there can 
be at most (M* choose 2) friendships. 

We can use this notion of friendships to model the change between two coclustering results 
and define a notion of precision and recall. Let U be the set of all observed features and 
consider two coclustering results A and B. To measure the changes from A (old) to B (new), 
define: 

A+ = { (x, y) in U * U | x and y are friends in A } 

A- = { (x, y) in U * U | x and y are not friends in A } 

B+ = { (x, y) in U * U | x and y are friends in B } 

B- = { (x, y) in U * U | x and y are not friends in B } 

Viewing Coclustering as Information Retrieval 

Our trick is to define coclustering A to be a kind of “ground truth” and coclustering B to be the result 
in an information retrieval task. To make sense of this, we draw the following analogy: 

Information Retrieval 
Concepts 

Search Engine Coclustering 

Document Space the set of all possible 
documents 

the set of all pairs of 
observable unique features 

Corpus the set of documents to be 
indexed 

the set of all pairs of 
observed unique features 

Relevant Documents 
(ground truth) 

the set of documents that 
should be returned for a 
query 

the set of friendships 
present in coclustering A 
(denoted A+) 

Retrieved Documents the set of documents that 
are actually returned for a 
query 

the set of friendships 
present in coclustering B 
(denoted B+) 

Given the above view, (A+ intersect B+) is the true positive set and (A- intersect B-) is the true 
negative set. The false positive in B is therefore the set (A- intersect B+) and the false negative 
is the set (A+ intersect B-). With the TP, TN, FP, and FN sets defined, we have also defined the 
notion of precision and recall. Just as in any information retrieval task, if B induces a high 
precision and recall, then we say that “B is close to A”. 

The notion of sample (row) friendships is defined analogously. 

5 By x~, we really mean x with a tilde on the top. 
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Metric Interpretation 

Although our theory is grounded in information retrieval, we feel that the terms “precision” and 
“recall” can be misleading and thus we want to offer an interpretation based on friendships. 
From the perspective of a configuration change, recall represents the fraction of friendships 
that is preserved from before the change to after the change. This is because 
Recall = TP / (TP + FN)  
= |A+ intersect B+| / (|A+ intersect B+| + |A+ intersect B-|) 
= |A+ intersect B+| / |A+|. 

Similarly, precision represents the fraction of present friendships that have already existed 
before the change. This is because 
Precision = TP / (TP + FP) 
= |A+ intersect B+| / (|A+ intersect B+|+ |A- intersect B+|)  
= |A+ intersect B+| / |B+|. 

A subtle point that we must stress is that feature friendship is a quadratic function and thus 
precision and recall based on friendship should be interpreted accordingly. For example, 
suppose a column group has width v before a configuration change and has width v / 2 after. 
The amount of friendships contributed this column group before the change is (v choose 2) = v * 
(v - 1) / 2 = v^2 / 2 - v / 2. After the change, this quantity becomes v / 2 * (v / 2 - 1) / 2 = (v^2 / 4 - 
v / 2) / 2 = v^2 / 8 - v / 4. Notice the leading term has dropped by a multiplicative factor of one 
quarter, which is exactly what we expect when the input to a quadratic function drops by one 
half. 

Experimental Setup 

Overall Directory Structure 

We strive to make sure our results are reproducible and we provide a tarball that contains all 
our code and data. Please see the README file in the tarball once it is uploaded to TeamForge. 

Data Sets 

Raw 

Our raw data set comes from a data drop from upstream. The file names are: 
{01-08-2012_1.tar, 01-09-2012_1.tar, 01-10-2012_1.tar, 09-12-2011_1.tar, 10-10-2011_1.tar, 
10-11-2011_1.tar}. There are a total of 22,772 files. By running the file command on them and 
filtering the output using `grep -è, 9,678 files match the pattern “PE32 executable (GUI) 
Intel 80386, for MS Windows$”. Starting from this raw data set, we iteratively apply 
reservoir sampling to obtain the following data sets: 

Large 

1000 files selected from Raw. 
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Medium 

100 files selected from Large. 

Small 

10 files selected from Medium. 

Features 

We use IDA for disassembly and for part of normalization as well. 

We extract features from the assembly dumps using a w-gram model . In this report, we use w 6

to denote the window size. This value is configurable but in practice we have been using w = 2. 
This corresponds to features of two consecutive assembly instructions. 

IDA outputs basic blocks, sets of assembly instructions which are executed in their entirety 
(atomically). Therefore windows which cross over different basic blocks are not really capturing 
the function of the program, so those are not included as features. 

The countFeatures script counts the number of distinct features over a set of IDA-parsed 
assembly files, which is detailed below. The input of the script is a folder containing these 
files. The script also takes in the parameter for window size, which is the number of 
consecutive assembly instructions used in a feature. The script prints the number of features 
to standard output. For example, python countFeatures.py norm0/ 2 counts all the 
features in the folder norm0/ using a window size of 2. 

The countAllNormFeatures script extends the previous script for multiple folders of parsed 

assembly files. It takes in the window size, the source folder containing the subfolders of 
assembly files, and a destination folder where the output will be stored. For example, suppose 
that the folder small/ contains the folders norm0/, norm1/, and norm2/, which contain parsed 
assembly files. Then “countAllNormFeatures 2 small/ smallout/“ runs countFeatures 
with window size 2 on the folders norm0/, norm1/, and norm2/, and puts the output in 
smallout/. The output for each folder is a text file which contains the individual output of the 
countFeatures script. 

Normalizations 

We use IDAPython to generate the disassembly, as well as other useful information such as 
the mnemonic (GetMnem), operands (GetOpnd), and operand types (GetOpType) for each 
assembly instruction. This is stored as a 6-tuple (instr, mnem, opnd0, opnd1, optype0, optype1) 
for each instruction. The output of this script is a list of lists, where each inner list is a basic 
block, and the element of each basic block list is the aforementioned 6-tuple. The output is 
then serialized using Python's pickle module and written to a file. If we run the script 
(raw_asm.py) on "sample", the output file will be "raw/sample". This file is used as input to 
the normalization script. 

6 More commonly known as n-gram model, but since we had already used n we decided to use w here instead. 
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We are then using a separate script to do the normalization (normalize.py). There are four 
types of normalization: (i) instruction normalization, (ii) register normalization, (iii) memory 
normalization, and (iv) immediate normalization. By combining these types at different settings, 
we are capable of achieving 32 different levels of normalization. The script takes an integer 
(0-31) and uses that integer as 5 bit flags. The first 2 bits (least significant) represent the level 
of instruction normalization (0 = none, 1 = light, 2 = medium, 3 = heavy). The next three bits (in 
order of significance) are on/off switches for immediate normalization, memory normalization, 
and register normalization respectively. This is detailed below: 

Instruction Normalization 

● None: does nothing 

● Light: removes additional info from instruction, leaving just the "base" instruction 
e.g., movsw -> mov 

● Medium: does everything in light, and removes condition codes 
e.g., jnz -> jcc, cmovge -> cmovcc 

● Heavy: does everything in medium, and collapses arithmetic and logical instructions 
into arith/log respectively 

Operand Normalization 

● Immediate: uses IDAPython's GetOpType() to convert operand to: 

5 = Immediate 
6 = Immediate Far Address (with a Segment Selector) 
7 = Immediate Near Address 

● Memory: uses IDAPython's GetOpType() to convert operand to: 
2 = Memory Reference 
3 = Base + Index 
4 = Base + Index + Displacement 

● Register: collapses registers into caller/callee save registers 
eax, ecx, edx -> caller 

ebx, esi, edi -> callee 

esp/ebp -> esp/ebp 

Depending on the version of IDA, "raw_asm.py" is run using 

idaw64 -A -OIDAPython:raw_asm.py sample      (Windows) 

idal64 -A -OIDAPython:raw_asm.py sample      (Mac/Linux) 
If you want to run raw_asm.py on each file in "dir", then the "batchida" bash script is provided. 

Simply run: 

batchida dir 

The normalization script is run using python normalize.py infile outdir normlevel. The 

details are included in normalize.py. 

There is a bash script batchnorm that calls normalize.py on every file in a directory 

12 



batchnorm indir outdir 

The script batchnorm uses the 6 normalization levels described below. If “sample” is 

normalized with normlevel 19, it will reside in outdir/norm19/sample; this file will be the 
normalized assembly.  It is a Python pickle dump of a list of lists, where each inner list is a 
basic block, and each element of the inner list is the normalized assembly instruction, as a 
string. 

In this report, we consider the following list of 6 feature normalization levels, ordered by 
increasing power. Each normalization contains all the optimizations from the previous 
normalizations. Reiterating, the normalization level corresponds to the component 
normalizations included, so for example normlevel = 18 = 10010b corresponds to using medium 
instruction normalization and register normalization. 

1. NO: (normlevel = 0) No normalization  

2. REG: (normlevel = 16) Normalize registers based on caller save, callee save, and 
esp/ebp  

Example: eax -> caller, ebx -> callee, esp -> esp, ebp -> ebp 

3. CC: (normlevel = 18) Normalize condition codes 

Example: jge -> jcc, cmovle -> cmovcc 

4. ARITH: (normlevel = 19) Normalize arithmetic/logic instructions 

Example: add -> arith, imul -> arith, xor -> log 

5. IMM: (normlevel = 23) Normalize immediates 

Example: add eax, 10 -> add eax, 5 where 5 comes from IDAPython’s 
GetOpType() 

6. MEM: (normlevel = 31) Normalize memory 

Example: lea edi, [ebx+4*esi] -> lea edi, 4 ; mov ebx [ecx] -> mov ebx 
3, where 3 and 4 come from IDAPython’s GetOpType() 

Number of Unique Features Before Hashing at Various Normalization Levels 

Using the above normalizations, the number of unique features for each data set are: 

Normalization \  
Data Set 

Small (10 files) Medium (100 files) Large(1000 files) 

1 - NO 35280 599029 4575338 

2 - REG 32845 550363 4192030 

3 - CC 32732 547605 4159199 

4 - ARITH 32385 543017 4124975 

5 - IMM 20569 227282 1539933 
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6 - MEM 4565 14090 55189 

Hash Quality 

In our application, the hash inputs are the unique observed features, and the hash bins are the 
bits in the fingerprint. The maximum load of the hash table is the number of unique hash inputs 
that get hashed to the fullest bin. This number depends on the hash function and the data set. 
The average load of the hash table is the number of unique hash inputs divided by the number 
of hash bins. This number depends on the data set only and does not depend on the hash 
function. 

Maximum Load at Normalization Level 1 - NO 

Fingerprint Size Small (10 files) Medium (100 files) Large (1000 files) 

16KB / 2^17 bits 5 16 61 

32KB / 2^18 bits 4 12 37 

64KB / 2^19 bits 4 9 22 

128KB / 2^20 bits 4 7 18 

256KB / 2^21 bits 2 5 11 

512KB / 2^22 bits 2 5 9 

1MB / 2^23 bits 2 4 7 

2MB / 2^24 bits 2 4 6 

4MB / 2^25 bits 2 3 5 

Maximum Load at Normalization Level 2 - REG 

Fingerprint Size Small (10 files) Medium (100 files) Large (1000 files) 

16KB / 2^17 bits 5 16 53 

32KB / 2^18 bits 4 11 32 

64KB / 2^19 bits 4 9 22 

128KB / 2^20 bits 3 6 17 

256KB / 2^21 bits 3 6 12 

512KB / 2^22 bits 2 4 9 

1MB / 2^23 bits 2 4 7 
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2MB / 2^24 bits 2 4 6 

4MB / 2^25 bits 2 3 5 

Maximum Load at Normalization Level 3 - CC 

Fingerprint Size Small (10 files) Medium (100 files) Large (1000 files) 

16KB / 2^17 bits 5 16 53 

32KB / 2^18 bits 4 12 34 

64KB / 2^19 bits 4 8 21 

128KB / 2^20 bits 3 6 17 

256KB / 2^21 bits 2 6 11 

512KB / 2^22 bits 2 5 8 

1MB / 2^23 bits 2 5 7 

2MB / 2^24 bits 2 3 6 

4MB / 2^25 bits 2 3 5 

Maximum Load at Normalization Level 4 - ARITH 

Fingerprint Size Small (10 files) Medium (100 files) Large (1000 files) 

16KB / 2^17 bits 5 15 57 

32KB / 2^18 bits 4 11 33 

64KB / 2^19 bits 3 10 22 

128KB / 2^20 bits 3 7 14 

256KB / 2^21 bits 2 6 10 

512KB / 2^22 bits 2 4 8 

1MB / 2^23 bits 2 4 7 

2MB / 2^24 bits 2 3 5 

4MB / 2^25 bits 2 3 5 

Maximum Load at Normalization Level 5 - IMM 

Fingerprint Size Small (10 files) Medium (100 files) Large (1000 files) 
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16KB / 2^17 bits 4 10 25 

32KB / 2^18 bits 3 8 19 

64KB / 2^19 bits 3 6 12 

128KB / 2^20 bits 3 5 9 

256KB / 2^21 bits 2 4 7 

512KB / 2^22 bits 2 4 6 

1MB / 2^23 bits 2 3 5 

2MB / 2^24 bits 2 3 5 

4MB / 2^25 bits 2 3 4 

Maximum Load at Normalization Level 6 - MEM 

Fingerprint Size Small (10 files) Medium (100 files) Large (1000 files) 

16KB / 2^17 bits 3 4 6 

32KB / 2^18 bits 2 3 5 

64KB / 2^19 bits 2 3 4 

128KB / 2^20 bits 2 2 3 

256KB / 2^21 bits 2 2 3 

512KB / 2^22 bits 2 2 2 

1MB / 2^23 bits 2 2 2 

2MB / 2^24 bits 1 2 2 

4MB / 2^25 bits 1 2 2 

Average Load - Fingerprint size: 16KB / 2^17 bits 

Normalization \ 
Data Set 

Small (10 files) Medium (100 files) Large (1000 files) 

1 - NO 0.26917 4.57023 34.9071 

2 - REG 0.25059 4.19894 31.9827 

3 - CC 0.24973 4.17790 31.7322 

16 



4 - ARITH 0.24708 4.14289 31.4711 

5 - IMM 0.15693 1.73402 11.7488 

6 - MEM 0.03483 0.10750 0.42106 

Average Load - Fingerprint size: 32KB / 2^18 bits 

Normalization \ 
Data Set 

Small (10 files) Medium (100 files) Large (1000 files) 

1 - NO 0.13458 2.28511 17.45353 

2 - REG 0.12529 2.09947 15.99133 

3 - CC 0.12486 2.08895 15.86609 

4 - ARITH 0.12354 2.07145 15.73553 

5 - IMM 0.07846 0.86701 5.87438 

6 - MEM 0.01741 0.05375 0.21053 

Average Load - Fingerprint size: 64KB / 2^19 bits 

Normalization \ 
Data Set 

Small (10 files) Medium (100 files) Large (1000 files) 

1 - NO 0.06729 1.14256 8.72677 

2 - REG 0.06265 1.04973 7.99566 

3 - CC 0.06243 1.04447 7.93304 

4 - ARITH 0.06177 1.03572 7.86777 

5 - IMM 0.03923 0.43351 2.93719 

6 - MEM 0.00871 0.02688 0.10527 

Average Load - Fingerprint size: 128KB / 2^20 bits 

Normalization \ 
Data Set 

Small (10 files) Medium (100 files) Large (1000 files) 

1 - NO 0.03365 0.57128 4.36338 

2 - REG 0.03132 0.52487 3.99783 

3 - CC 0.03122 0.52224 3.96652 
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4 - ARITH 0.03088 0.51786 3.93388 

5 - IMM 0.01962 0.21675 1.46859 

6 - MEM 0.00435 0.01344 0.05263 

Average Load - Fingerprint size: 512KB / 2^22 bits 

Normalization \ 
Data Set 

Small (10 files) Medium (100 files) Large (1000 files) 

1 - NO 0.00841 0.14282 1.09085 

2 - REG 0.00783 0.13122 0.99946 

3 - CC 0.0078 0.13056 0.99163 

4 - ARITH 0.00772 0.12947 0.98347 

5 - IMM 0.0049 0.05419 0.36715 

6 - MEM 0.00109 0.00336 0.01316 

Average Load - Fingerprint size: 2MB / 2^24 bits 

Normalization \ 
Data Set 

Small (10 files) Medium (100 files) Large (1000 files) 

1 - NO 0.0021 0.0357 0.27271 

2 - REG 0.00196 0.0328 0.24986 

3 - CC 0.00195 0.03264 0.24791 

4 - ARITH 0.00193 0.03237 0.24587 

5 - IMM 0.00123 0.01355 0.09179 

6 - MEM 0.00027 0.00084 0.00329 

Average Load - Fingerprint size: 4MB / 2^25 bits 

Normalization \ 
Data Set 

Small (10 files) Medium (100 files) Large (1000 files) 

1 - NO 0.00105 0.01785 0.13636 

2 - REG 0.00098 0.0164 0.12493 

3 - CC 0.00098 0.01632 0.12395 
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4 - ARITH 0.00097 0.01618 0.12293 

5 - IMM 0.00061 0.00677 0.04589 

6 - MEM 0.00014 0.00042 0.00164 

Research Questions 
In this report we focus on the following questions. Each of them will be discussed in its own 
section below. To ensure that our experiments are run at a realistic fingerprint size, we select 
for each dataset the smallest fingerprint size such that the maximum load is strictly less than 
10 before normalization. (We have not attempted to specifically optimize our choice of the 
maximum load.) This resulted in a fingerprint size of 16KB (2^17 bits) and 64KB (2^19 bits) for 
the small and medium data sets respectively . The corresponding average loads are 7

respectively 0.27 and 1.1 and the corresponding maximum loads are respectively 5 and 9. We 
justify this choice by observing that 32% of the bins are empty and 36% of the bins have 
exactly one item.  This matches a realistic input to a coclustering run. 8

How do different levels of feature normalization change 
BitShred’s coclustering output? 

The pipeline is structured as follows: 

1. Prepare the fingerprints. This is done by editing pipeline_prepare.py to use the 
appropriate DATA_DIR, and then running python pipeline_prepare.py norm2, 
providing the normalization level you wish to produce fingerprints as an argument (in 
this case norm2). 

2. Cocluster the malware. This is done by running (assuming you’re working on 
normalization level norm6 in this case): 
$ /usr/bin/time -v ./bitshred -r 1 -c 4 -d norm6_db -t norm6_data -o 

log6.out 

where we use /usr/bin/time to get statistics like time and memory usage (relative 
paths should be substituted as appropriate). 

3. Interpret the result of running pipeline_interpret.py, which lists the row grouping 
precision and recall for each of norm2 through norm6. 

The BitShred code as written provides no way to control the number of row and column groups 
in its final output. We considered modifying it to add this feature, but after some consideration 
of the coclustering algorithm it uses, we decided that this is not a good idea. Our justification is 
that  there could be a drastic decrease in the “score” (lower is better) that BitShred assigned to 
a coclustering after a small variation in the number of row/column groups it produced. As such, 

7 At the time of this report, our experiments on the Large data set are still running. Therefore, we have chosen 
to report on the Small and Medium data sets only. 
8 The actual distribution: 0: 31.93%, 1: 36.45%, 2: 20.72%, 3: 7.97%, 4: 2.27%, 5: 0.51%, 6: 0.10%, 7: 0.02%, 8: 
<0.01%, 9: <0.01% 
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instead of controlling the exact number of rows and columns, we record here the number of 
groups in the output. Future work should consider how to best obtain control on the number of 
row and column groups. 

Number of row and column groups in BitShred output 

Normalization \ 
Data Set 

Small (10 files) 
16KB fingerprints 

Medium (100 files) 
64KB fingerprints 

1 - NO 7 rows, 44 columns 33 rows, 2108 columns 

2 - REG 7 rows, 39 columns 36 rows, 2242 columns 

3 - CC 7 rows, 47 columns 23 rows, 2228 columns 

4 - ARITH 7 rows, 35 columns 24 rows, 2117 columns 

5 - IMM 7 rows, 37 columns 38 rows, 1063 columns 

6 - MEM 8 rows, 26 columns 39 rows, 576 columns 

Precision/Recall 

Normalization \ 
Data Set 

Small (10 files) 
Fingerprint size 16KB 

Medium (100 files) 
Fingerprint size 64KB 

1 - NO 1.00/1.00 1.00/1.00 

2 - REG 1.00/1.00 0.92/0.80 

3 - CC 1.00/1.00 0.70/0.82 

4 - ARITH 1.00/1.00 0.87/0.90 

5 - IMM 1.00/1.00 0.78/0.56 

6 - MEM 0.50/0.17 0.66/0.58 

How do different levels of feature normalization affect the 
running time of BitShred’s coclustering algorithm? 

Normalization \ 
Data Set 

Small (10 files) 
Fingerprint size 16KB 

Medium (100 files) 
Fingerprint size 64KB 

1 - NO 10.113s 1868m 44s 

2 - REG 10.261s 1548m 28s 

3 - CC 13.896s 793m 09s 
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4 - ARITH 9.985s 861m 29s 

5 - IMM 8.475s 1024m 21s 

6 - MEM 6.259s 685m 18s 

Without reducing the hash range, is there a feature normalization 
that approximately preserves BitShred’s coclustering output while 
being significantly faster? 
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Conclusions 
As we can see from the plots above, feature normalization does appear to be rewarding. For 
example, with the Medium dataset, the running time drops by around 50% while respectable 
precision and recall of around 75% is maintained. 

One important future work would be to control the number of row and column groups in the 
final output. Another would be to investigate the combined effect of reducing the range of the 
hash function while increasing normalization. We may also investigate the normalization levels. 
At present, their ordering is based on not making the number of unique features too low. We 
also have not investigated more creative combinations of different normalization types. (We 
enforced a strict inclusion order to ease result interpretation. Ideally, we can try all possible 
combinations.) 
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